
J .  Fluid Mech. (1985), wol. 152, p p .  391418 

Printed in CJreat Britain 

391 

Nonlinear Rayleigh-BCnard convection with 
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(Received 7 July 1983 and in revised form 12 October 1984) 

Fully three-dimensional numerical solutions are presented for Rayleigh-BQnard 
convection subject to stress-free boundary conditions. A motion with square planform 
is studied for varying Rayleigh number R and Prandtl number a. It may be 
understood partly in terms of a truncated modal representation (after Lorenz 1963). 
Thermal layers of unusual structure are found at high R. For small a, steady solutions 
exist, but are not of ‘flywheel’ type, and the heat transport depends strongly on a. 
The study also verifies that laminar convective flows may be ergodic. 

1. Introduction 
The Rayleigh-BBnard problem concerns a layer of Boussinesq fluid confined 

between horizontal boundaries and heated from below (see e.g. Chandrasekhar 1961). 
It has been, and continues to be, subject to intense study because of its widespread 
application and many fascinating aspects (Busse 1978). We remark that the simplest 
theoretical idealization of infinite layer and ‘ stress-free ’ boundary conditions is 
distinct from the usual laboratory experiment which involves a fluid bounded by fixed 
plates on all sides. We take the theoretician’s viewpoint, content with an indirect 
approach to both laboratory and astrophysical convection. 

The latter flows lack rigid boundaries, but are normally turbulent, taking the form 
of cells rather than rolls. However, even when the motion is two-dimensional or nearly 
so, i t  is not easy to predict the exact wavelength that is preferred (Jhaveri & Homsy 
1980). In  the laboratory, the lateral boundaries even in containers of very large 
horizontal extent make things more complicated : in particular the flow may become 
irregularly time-dependent even at the onset of convection (Ahlers & Behringer 1978). 
Much theoretical progress has been made (Zippelius & Siggia 1982; Cross 1982,1983; 
Cross et al. 1983; Greenside, Coughran & Schryer 1982), but it is difficult to see how 
to relate this work closely to e.g. a stellar convection zone. We follow Moore & Weiss 
(1973, hereinafter referred to as MW) by selecting a planform, and then subjecting 
it to thorough investigation. 

We choose the square planform, even though in an extended layer with perfectly 
thermally conducting boundaries, it is known to be unstable on theoretical grounds 
in both the viscous (Schliiter, Lortz .& Busse 1965) and inviscid ($2.3) limits. 
However, Schliiter et al. also show that motions with hexagonal planform are 
unstable, and bimodal convection is known to occur only over a narrow range of 
parameters (Busse 1978). Square cells are readily accessible to analytic and numerical 
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investigation, and the contrast with the results of Jones, Moore & Weiss (1976, 
hereinafter referred to as JMW) for axisymmetric convection should be particularly 
interesting. Moreover, Jenkins & Proctor (1984) have predicted that the square 
planform should be preferred when poorly conducting boundaries are used, although 
they did not consider bimodal flows. 

Further caution is necessary, because linear theory predicts a motion with square 
planform consisting of two sets of rolls intersecting each other at right angles, which 
does not accord with solar observations: regions of rising fluid are surrounded by ones 
where flow is downward, a property of the hexagonal cell (Stuart 1964). In  $2 we 
consider second-order theory, which predicts a flow with the same topological 
properties as does linear theory. In addition we derive for the time-dependent 
problem a truncated modal representation (after Lorenz 1963), which for moderate 
values of R, although it exhibits some interesting transient phenomena, apparently 
has asymptotically only steady solutions. These show unphysical behaviour at quite 
small R (cf. Malkus & Veronis 1958), so for larger R we proceed to a numerical 
investigation of the governing equations. 

There have been several computations using fixed-plate boundary conditions for 
these R, motivated by the experiments of notably Krishnamurti (1970, 1973). She 
and others typically found, as reviewed by Busse (1978), that convection at onset 
takes the form of rolls, becomes three-dimensional at higher R and finally turbulent. 
Fully three-dimensional calculations are still very expensive to perform. The early 
investigations (Lipps & Somerville 1971 ; Veltishchev & Zelnin 1975; Ozoe et al. 1976) 
all suffer in varying degrees from lack of computer store and time, while Lipps (1976) 
and Grotzbach (1982) study only a few parameter values and have chiefly been 
concerned with transitions in the convective planform. Our aim has been to follow 
less obvious but nonetheless important changes in the flow properties with greater 
resolution in (R, +space. We describe the necessary computational techniques 
in $3 and present numerical results for the ranges 1500 G R < 6OOOO (a = 1) and 
0.035 < a < 10 (R = 5000) in $54 and 5. Subsection 5.3 contains other calculations 
at low a. We consider the stability of these solutions and the effect of changing initial 
conditions in $6. 

The three-dimensional flows found are related to the bimodal and square-cell 
convection found in laboratory experiments (Busse 1978 ; Frick, Busse & Clever 1983). 
Our high-a results may be understood in terms of the simple boundary-layer model 
described by MW, but ‘flywheel’ convection is not found at low Prandtl number. 
Instead we discover that in most respects decreasing a < 1 at constant R corresponds 
to increasing R at u = 1. We confirm that the flow in these two rbgimes, when the 
Reynolds number is large, becomes ergodic as predicted by Arter (1983b). The 
asymptotic scalings are not well-determined, but it seems that Nusselt number 
N oc RO.9 as R+ 00 for u = 1, and N depends strongly on u as c + O  at fixed R. For 
further discussion see the concluding 7. 

2. Analytic results 
2.1. Statement of the problem and linear theory 

The governing equations are given by Chandrasekhar (1961). Let T be temperature, 
I( the velocity, w = curlu the vorticity and p the pressure field. In  the Boussinesq 
approximation, the momentum equation is 

au 1 _ -  - - (**grad) I( -- gradp +P--Pr g+ v Vau, 
at Po Po 

(2 .1~)  
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subject to divu = 0, where density p = po[l -a(!!'-To)]. T satisfies 

_-  - - u grad T+K V2T. 
at 
aT 

(2.1 b)  

K and v are the thermal and viscous diffusivities, pr is a reference density distribution 
and gravity g acts in the negative 2-direction ( g  = - gL,  g > 0). We also consider the 
vorticity equation, which follows from the momentum equation, and is 

ao 1 _-  - curl (u x o) +- gradp x g+ v V 2 0 .  
at Po 

The form of pr is chosen by taking the corresponding temperature distribution to be 

T,(Z) = T0+AT(1-2), 

where AT is the temperature difference across the layer of fluid. The set of equations 
may be made dimensionless by scaling distance with layer depth d and t with respect 
to the thermal diffusion time d 2 C 1 .  This introduces Rayleigh number R = g a  ATd3/~v 
and Prandtl number (r = V / K .  

Boundary conditions for u and T are given by Chandrasekhar (1961). Normal u 
is taken to vanish on the faces of a A x A x 1 box with stress-free boundaries. The box 
has its upper and lower sides held at fixed temperatures, and there is no lateral heat 
flux. We use the notation uy = CSC as a shorthand for 

uy = 0 (2 = 0, 1). 

nxx . c o w o o  
uy = x z z anmq cosA a m 3  cosqm.) A (Cf. writing 

n-o m - 1  q - 0  

The fields may then be written 

u = (SCC, CSC, CCS), and T- (1 -2) = CCS, 

using obvious variants on the above. 

(1961). Here we record that modes with a spatial structure given by 
A general linear stability analysis for this problem is given by Chandrasekhar 

(n, m, q) = (1, 1,  1) 

are unstable when 

Other possible flows include rolls with (n, m, q)  = (l,O, 1) or (0, 1 , l )  ; setting A - 2  or 
= 0 in the above gives the appropriate stability criteria. Varying the size of the 

box for the same modal structure shows that R(e) is least He) % 658 when p = ij, 
implying that the rolls favour a wavelength $, and the (1,  1 ,  1 )-flow prefers a longer 
wavelength, e.g. 2 for the square planform A = A = 1. Since we shall be primarily 
concerned with flows confined to a cube we remark that for 1 = 1, He) 1315, and 
for A-2 = 0 and A2 = 1,  R(e) FZ 779. 

2.2. Nonlinear anulysie 
We seek a spatially truncated modal representation of the equations (2.1), guided like 
Lorenz (1963) by a solution to (2.1) which is a power series in E = ( R -  Rce))+ but where 
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the first term is a ( 1 ,  1 ,  1)-mode. The fully three-dimensional problem is more difficult 
because a scalar representation of the velocity field is in general no longer possible. 
However solutions of the linearized version of (2.1) have w, = 0, thus to keep the 
complexity of the ensuing algebra to an acceptable level, we choose u to be poloidal, 

u = curl curl [Fl(x)  21. 

Use of the vector identity 

$?.curl (ul x w2)  = 2.grad (V2F,) x grad (V2F2), 

where ui = curlcurl(F,L), i = 1 ,  2, wi = curlui, 

shows there is no generation of vertical vorticity at second order (Schluter et al. 1965; 
Jenkins & Proctor 1984). A t  third order a (1, 1, 1)-mode appears for which w, + 0 
unless we set h = A = 1, i.e. we have convection with square planform. All terms O(e4) 
are neglected. 

Our model has u = curl curl FZ, where 

b’ = - 4aLb + mL-l( L + 1 )f- L-’(L + 1)  a2, 

d’ = - (L+l)d+a(2+4e+4f) ,  

e’ = -4(L- 1 )  e-4ad, 

xx xy 
1 1 

xF = 4a(~)  cos - cos - sin xz + b(7) 

and 

AX xy 
1 1 

x[T-  (1  - z ) ]  = 447) COB - cos- sin xz + 2e(7) sin 2x2 

Similar systems may presumably be derived for other symmetric planforms. Contrast 
(2.3) with the equation of Jenkins & Proctor (1984) for the identical problem with 
poorly conducting boundaries : their set is third-order because they choose (for 
reasons that are not entirely clear) a different ordering for the time derivative to that 
implied by (2.3). As they have chosen a planform rotated by 45” with respect to ours, 
they can, however, pronounce on the stability of that pattern to perturbations 
consisting of rolls. 

Observe that we could recover the Lorenz equations by setting b = f = 0, except 
for the presence of the term in a2 in the second equation. This represents vortex 
stretching, i.e. (a. grad) u =+ 0, which excites mode b, and mode f follows. This 
contrasts with the work of Toomre, Gough & Spiegel (1982), who choose a second 
mode ad hoc: their u for the square cell differs from ours. Further, they derive their 
model by considering only the z-component of the momentum equation: we expect 
a different one to arise from the x- or y-component. 

If we now linearize about the steady solution a = b = d = e = f = 0, we see that 
the equations split into two pairs, one for a and d only, the other for b andf. As might 
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r 
FIGURE 1. Sketch of steady-state amplitude a2 as a function of Rayleigh number r for the 

truncated system (2.3) with 2 = (I = 1. 

be expected, the second pair gives the critical value r = r(f) which translates into 
R-critical for a (2 ,0 ,2)  mode. There is therefore no advantage in copying Lorenz by 
defining r so that r = 1 when R = R(e) - the normalization used, which is such that 
when R = R(e), r = i (L+ 1)2, has been chosen to keep (2.3) as simple as possible. 

Analysis which partly parallels that of Malkus & Veronis (1958) shows that (2.3) 
has a steady finite-amplitude solution of the form sketched in figure 1. For this b, 
e and f < 0, but the signs of a and d are determined only by the condition that ad > 0. 
Numerical work, details of which may be published elsewhere, indicates this branch 
is stable throughout its length. Contours of e(r, a) = constant are drawn in figure 2 
( [ - e l  is a measure of the heat transport by the convection). Note the strong 
a-dependence as a + O ,  and that the heat transport decreases with r for sufficiently 
large r .  We expect the model to be misleading at these r .  

2.3. Spatial structure of the finite-amplitude jlow 

We consider the velocity pattern given by 3' above. If a and b are time-independent 
then streamlines of u are given by 

dx -- - u(x@*)) = curl curl [F(x )  21, 
dP* 

where p* is a parameter related to the turnover time. A non-dissipative set of 
equations such as this may usually be expressed in a Hamiltonian formalism as, for 
example, Whiteman (1977, pp. 1062-1063) explains: if we take as momentum 
variable 

P H  = su,? dy, 

then x is the conjugate coordinate and the role of time is played by z, i.e. the 
Hamiltonian H then follows from the integration of dp,/dz = - aH/az .  Arnold (1966, 
p. 347) appears to have been the first to suggest that three-dimensional fluid flows 
may therefore become ergodic in the same way that, for example, the Hbnon-Heiles 
Hamiltonian is able to describe particle trajectories that fill finite volumes of phase 
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The 

space (Whiteman 1977). Following Arnold, HBnon (1966) numerically calculated 
(semi)ergodic streamlines of a particular inviscid flow, the physical significance of 
which was not, however, demonstrated. 

The usual analytic techniques of Hamiltonian theory do not apply straightforwardly 
(B. McNamara, private communication). Numerically, Arter (1983b) has verified that 
for the above system as Ib/al increases from zero, regions where streamlines are 
ergodic do indeed develop and are prominent near surfaces which bound the 
convection. (When a or b is zero, streamlines are closed.) 

The properties of the singular (stagnation) points x such that u(x)  = 0 are of 
interest. To compare with Arter (19833) we define n = - b/a  and confine our attention 
to the triangular prism 0 < x < +, x < y < 1-2, 0 < z < 1. ( u I  =I= 0 inside the prism, 
except for n = 0, when the velocity vanishes on the lines x = y = a, x = z = t and 
y = z = +. There are always singular points at its vertices and at  the centre of the 
face x = 0; for n > 0, the stagnation point at x = y = z = t is replaced by two nearby, 
on opposite faces of the prism. It may be easily shown that the flow on the face 
y = 1 -x is just that on y = x after reflection in the plane z = +. We therefore study 
only the point Pl: (xl, yl, zl) given by 

(c1, c2, cg) = cosx(x,+y,, "1-Y1, 21) 

1 - (1  + 32n2)!) . 
8n 

(Taking the positive sign with the square root gives IcosxzlJ > 1 unless n > t.) 
Near PI, motion normal to y = x is described by 

I'= -2Yc3(l-ct), 

FIQURE 2. Steady - e  = f ( N -  1 )  aa a function of r and (r for the truncated system (2.3). The 
contours are drawn at equally spaced values, with the maximum at centre right. 
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where Y is a perturbation to c2. Similarly, in the prism face we have that 

) (3 0 (1-c;) (1-8m3) (3-( B - (1 -c:) ( 4 ~ 4 -  1 )  (1 -c:) 2c3 

Seeking solutions oc exp (st), we find that 8 > 0 for the first equation and for the 
second, s is complex with negative real part. Thus the flow in the prism face consists 
of a swirl into PI. At any point near PI, but not on y = 2, there is a component of 
flow away from the face. (Motion near the stagnation point which appears when n > t 
has an identical form under time-reversal.) 

In the inviscid limit, it follows from the local theory of Arter (unpublished 
manuscript) that these structures are associated only with time-dependent motion. 
His model for inviscid flow near a stagnation point entails setting 

T = U z +  Vy+ Wz, o = ($,x,#), 
where U,  V, W, $, x and # depend only on t, and substituting into ( 2 . l b )  and (2.2) 
to give (after rescaling variables) 

x =  v, $ = - U ,  # = O ,  

0 = -#V+$W, 3 =  #U-XW, w = -+u+xv. 
The only stable solutions of this system are oscillatory. However, at boundaries where 
some of the gradients of u and Tare fixed, this analysis does not apply. The stagnation 
point at ,  for example, the centre of the face x = 0 may therefore form a stable steady 
flow. 

3. Computational techniques 
3.1. The numerical method 

The numerical analysis of the equations (2.1) breaks down into two parts. Obviously 
one is stepping the (hyperbolic) equations forward in time; the other is the solution 
of an elliptic Poisson equation for the pressure at each timestep to ensure div u = 0. 
Since three-dimensional calculations are expensive in terms of computer time, it is 
essential to pick the most efficient method and machine. 

The ICL Distributed Array Processor (Hockney & Jesshope 1981) was chosen 
because much experience had been gained in its use (Arter 1983a, hereinafter referred 
to as paper A) and also it is particularly suitable for time-stepping large arrays. For 
a problem with periodic boundary conditions, the pseudospectral method (Orszag 
197 1 ) is usually to be preferred. However, this depends on the availability of high-speed 
Fourier-transform routines, usually written in assembly language. Such low-level 
routines are not provided on the DAP: its architecture is such that the speed-up 
relative to DAP-FORTRAN is insignificant. In  these circumstances, finite-difference 
methods are competitive (Arter 1982), besides being easier to program. The scheme 
used is time- and space-centred with the DuForkFrankel representation for diffusive 
terms, as first suggested by Roberts & Weiss (1966) (see a60 Peyret & Taylor 1983 
$2.6.3). 

Grotzbach (1982) has independently developed a very similar code. Like him, we 
also solve Poisson’s equation for the pressure by transforming the fields to and from 
wavenumber space, where inverting the Laplacian is a trivial operation. The 
discussion of Peyret & Taylor (1983, $6.3.1) implies that because of our boundary 
condition n gradp = 0, where n is the surface normal, p is expressible as a cosine series 
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in each spatial variable. We can use the algorithms of Cooley, Lewis & Welch (1970) 
to reduce the arithmetic required. 

However, the use of a leapfrog scheme means that only alternate grid-points are 
defined at each timestep. Thus before Fourier-transforming we have to interpolate 
for the other half of the mesh, using a fourth-order formula (Moore, Peckover & Weiss 
1973). In addition, we use a 24 x 24 x 24 grid, yet the DAP is physically a 64 x 64 
processor array. The fields have to be carefully arranged in store, and dislocated in 
one coordinate direction (S. F. Reddaway, private communication) to make the best 
use of the computer. 

There is a subtle point concerning the numerically obtained solutions. We must 
realize that as far as the code is concerned a statement such as T- (1 - z )  = CCS does 
not constrain the higher derivatives of T. Similarly, although all odd derivatives of 
p necessarily vanish at the boundaries, since the scheme is second-order this p 
is consistent with all p- and u-fields that do not drive n*gradp $. 0 by, for 
example, their nonlinear interactions. In  particular, it  is possible to take p oc P, 
T - (1 - x )  = CCS, despite the apparent conflict with the modal expansion for u given 
in 92.1. 

3.2. Validation of the program 

This large code has been thoroughly validated as described by Arter (1982). As in 
paper A, the two-dimensional codes of Moore et al. (1973) have been successfully used 
to test the complete program when initial variation with one or other horizontal 
coordinate is suppressed. The code thereby demonstrates a dependence on the 
starting conditions, since the rolls obtained appear to be stable at parameters where 
motions with square planform are found. Further, a numerical solution decays when 
started with a fully three-dimensional velocity pattern at  R = 1O00, although rolls 
exist for R > 779. Grotzbach (1982) also notes similar difficulties, which need not be 
entirely numerical (see e.g. Busse 1978). Otherwise, the results again suggest the 
primitive variable formulation is slightly superior to that used by Moore et al. (1973) : 
we find that point values of the computed solutions differ most where there are large 
gradients of @p, the two-dimensional flow potential. The discrepancies are such 
that better agreement with our u is obtained by using higher-order difference 
representations of curl (0, @p, 0). Since the T-fields are practically identical, we derive 
values for the total heat transport N closer to those found using the finer two- 
dimensional meshes. 

Lastly we discuss the question of when the numerical results cease to be good 
representations of the solutions of (2.1). Unfortunately, owing to the complexity of 
the code needed to perform the Fourier transforms, i t  has not been possible to consider 
mesh sizes other than 243. Computations on significantly larger meshes are beyond 
the DAP’S present capabilities (the current ones take 30-90 min of DAP time) and 
it is not clear that studying grids coarser than 243 would be of value commensurate 
with the programming effort involved. Grotzbach ( 1983) has recently verified that 
the criterion for two dimensions derived by MW applies, namely that a numerical 
solution is qualitatively correct provided every boundary layer is at least three 
mesh-intervals wide. 

Further experience with the code of paper A (Arter 1984a) argues that this is 
pessimistic, and the ‘three-points ’ test should be applied only to the significant field 
components in the dominant features of a flow. It is not easy to program the test 
because of the subjective element this introduces, so we write a code that examines 
the variation of each field component for any two coordinates held constant, e.g. 
f(z) = u,(z, y ,  z) .  It then discovers the two points in z between which occurs the largest 
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FIGURE 3. Plots of horizontally averaged temperature To(%) for r~ = 1 ; varying R 
marked on the curves in units of thousands. 

monotonic change in f, and flags if more than half of this is confined to one mesh 
interval. Of the u ( x )  presented in this paper only the accuracy of that for u = 0.05 
and I = d is thereby declared suspect: T(z) is flagged for z close to boundaries for 
R 3 10000 and Q = 1, but we believe that the ‘three-points’ criterion is not violated 
there until R approaches 60000. 

4. Numerical experiments at unit Prandtl number 
4.1. Phemnnenology 

The series of calculations for Q = 1 was begun at R = 25000 using an O( 1)-amplitude 
velocity pattern with the (1 ,1 ,  1) modal structure predicted by linear theory. No 
perturbation was made to the temperature distribution. The resulting steady 
three-dimensional solution (which was reached on a turnover timescale) was used 
to start computations at R = 20000 and 30000 and so on for R down to 15000 and 
up to 60000, for which the flow has structure aa fine as the mesh spacing. A second 
set of calculations covered R = 3500-10000, beginning with R = 5OO0, and solutions 
for R = 1500 and 2000 were computed separately. 

Almost all properties of the results showed a monotone variation as R was 
increased. In  figure 3 the graphs of To(z), horizontally averaged temperature T, 
indicate the development of isothermal regions away from the horizontal boundaries. 
They share this feature with the results for rolls (Veronis 1966), although To(z) for 
the three-dimensional solutions remains monotone over a greater range of R .  Further, 
the second change in sign of dTo/dz in z > + for R > 10000 is not seen in the 
two-dimensional results even at much larger R (MW) or in the axisymmetric case 
(JMW). Figure 4 reveals more: it shows a plot of vertically averaged temperature 
F(z, y) within the square 0 d 2, y < 2, for R = 30000. The regions enclosed by the 
extremal contours have become X-shaped to give a pattern which, when rotated 
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FIGURE 4. Vertically averaged temperature for u = 1, R = 30000. The contours are drawn at 
equally spaced intervals; regions marked + contain the highest values, those marked - the lowest. 
The area covered is 0 Q x, y Q 2, i.e. 4 times that used in figure 5. 

through 4 5 O ,  resembles figure 11 of Busse (1978). That ‘shadowgraph’ was obtained 
experimentally, and, although tricky optical effects are at work, it is essentially a 
measure of !F(z,y). Thus, despite their different boundary conditions, the flows 
described in this section appear to have laboratory counterparts. 

Unlike experimenters, we may produce three-dimensional plots of isothermal 
surfaces (figure 5 ) .  These help us to understand why dT,/dz changes sign and also 
serve to illustrate important properties of the flow field u. We see that the pattern 
of convection is generated by a volume with base area 2, and has eightfold symmetry 
(cf. Veronis 1966). Note that we could equally consider a volume (e.g. - 1 < x+y < 1) 
centred on a region where isotherms are displaced upwards, implying rising flow, or 
one with u, < 0 at the middle. The flow is topologically two-dimensional (Stuart 1964; 
Drobyshevski & Yuferev 1974). 

Nevertheless u(z, y, z )  has three components, so it is difficult to understand its 
detailed properties. The graphics used in paper A are not very helpful because the 
surfaces u2 = constant distort very little as R varies. We note though that the maxima 
of u2 on the vertical edges are displaced with respect to z = t :  however, the asymmetry 
diminishes as R increases. Plotting streamlines on the vertical planes of symmetry 
is more revealing (figure 6). 

Flow neither enters nor leaves them, but since au,/az $; 0 there, the lines need not 
be closed. On the planes y = x and y = 1 -x they reveal the usefulness of the 
truncated modal expansion. We expect that greater R should lead to increased 
importance of the second-order mode, represented by n (§2.3), and thus that the spiral 
attractors shown in figure 6 should tighten and move from the midplane z = t aa R 
increases. Indeed, they do so as R changes from 1500 to 2000, and this trend continues 
up to the highest R studied. Note that, even for R as small as 1500, Re = O(10) and 
the model cannot be formally justified. Nonetheless it also successfully predicts the 
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FIGURE 5. Stereo plots showing surfaces of constant temperature T = i, 4 and for steady solutions 
with g = 1 and (a) R = 2000, (b)  R = 20000. The maximum value surface is the lowest, the 
minimum the highest on the left- and right-hand edges of the (unit) cube. To view, hold a stereo 
pair a t  15-30 cm distance, one image before each eye, with eyes relaxed to focus at infinity. Three, 
not four images should be seen, and the central one, which may at  first appear out of focus, gives 
an accurate impression of depth. 

appearance and spread of regions where streamlines are seemingly ergodic (see 
figure 7). Some structure can, however, be made out even at R = 30000. For a 
particular field-line, the average value of the turnover time t,, defined as the interval 
between successive transits by a test particle of the plane z = 4, suffices to determine 
whether it is ergodic. For such paths t, m 2.5-2.7 on average (using units where the 
maximum of u,, u,, = l), otherwise the average t ,  m 1.9-2.1. In  Arter (1983b), unlike 
here, these two t ,  diverged as the equivalent of R increased. 

The change in the vorticity-squared distribution m2 is more marked than for u2 
(MW, JMW), although sadly the three-dimensional contours are not easily followed, 
even using colour graphics and stereopsis. Nevertheless they confirm the impression 
one may derive from figure 6, namely that, at low R, a2 is maximum on the vertical 
faces of the unit cube drawn in figure 5, but as R is raised the distribution changes 
so that the maxima lie in the spiral attractors and peak sharply there. A t  all R, large 
m2 is associated with regions of reduced u2. 
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RQURE 6. Streamlines of steady flow for u = 1 and (a) R = 2000, ( b )  R = 20000, drawn for 
0 < 5, y, z < 1 in the planes z = 0 (bottom left), z = 1 (bottom right); y = 0, 1 ; y = 1 -z and y = z 
(top). 

Although the initial velocity perturbation possesses no vertical vorticity , the 
numerical solutions have w,, + 0 (m denotes maximum absolute value). A relative 
measure rw = w,,/u,, grows rapidly with R, from 0.0024 to 0.35 as R increases from 
3500 to 15000. Figure 8 shows a typical distribution of w: for moderate Re = 26.8. 
It is clear that modes (e.g. (2 ,2 ,  3)) with a different spatial structure to those of the 
truncated system will be needed to represent this-such an extended model will 
probably be too complicated to be of much use. At large R, 0: develops even more 
contorted structure, although its gradients are not as large as those of ma, and the 
two have their maxima in disjoint regions, reflecting that w: is significantly smaller 
than w i  + w:. 

Let us look at the steady vorticity equation in detail. Taking the curl of the 
momentum equation and non-dimensionalizing with respect to the turnover time 
yields 

0 = Re curl (u x o) +--L x grad T-Vzoo. 

We see that in isothermal regions where the diffusion of o might be expected to be 
small, such as the middle of cube faces, u x o = grad @ for some @. Since u is ergodic, 
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RMJRE 8. Stereo plot of surfaces w: = 0.25 and 0.8 in units of w&,, for R = 3500 and u = 1.  
The surfaces of higher w: all lie within those of the smaller value. 

however, @ = 0 (Arnold 1972), and as the imposed boundary conditions prevent 
o 11 u, w must be small as Re-+ 00, in agreement with numerical calculation. Figure 9 
reveals the spatial distributions of the vector amplitudes V,, V, and V3 of the above 
three terms in the vorticity equation at R = 10000. All have maxima in the region 
of the spiral attractors. At lower and higher R ,  the secondary features of Vl become 
more prominent, and V3 also becomes relatively greater in those regions. Vorticity 
generation ( V,) takes place outside the volumes where V, is largest ; thus there is need 
for transport (V,) .  It is remarkable that, unlike MW and JMW, the vertical plumes 
are not the dominant source of V,, as cursory inspection of the isotherms in figure 5 
would suggest. This effect which is associated with the formation of layers where 
T varies as exp (-2) (§4.2),  distinguishes the square from two-dimensional and 
circular planforms. 

On a last descriptive note, we show in figure 10 plots of the four terms defmed by 
Lipps (1976), after Deardorff & Willis (1967), appearing in the horizontally averaged 
kinetic-energy equation. In  our notation these terms are 

a 
aZ TI = C T R ( ~ , [ T - ( ~ - Z ) ] ) ,  T, =-- (u,.+$~)), 

We see that essentially the production term Tl balances the dissipation T4, except 
near the boundaries where T,+T4 x 0, and that IT,I is everywhere small. The only 
contrast with Lipps’ results (despite their time-dependence) is that we find T, > 0 
(and T3 < 0) at the edges z = 0, 1, apparently because our flow lacks a viscous 
boundary layer - this Ti behaviour is predicted by the truncated model. Lipps (1976) 
considers other statistics of his numerical experiments, which are for u = 0.7. We 
suggest that our graphics, since they provide local information about the relative 
importance of the various terms in the governing equations, give a better insight into 
the physics of the solutions. Further, here the planform is fixed by our choice of initial 
conditions (see 86). 

4.2. Asymptoties and Nusselt-number variation 

The thermal layers which develop a t  high R may be tested for simple functional 
dependences provided they form near the boundaries of the computational box or 
‘cube’. The number of meshpoints used is only 24 in each direction; therefore the 
results derived cannot be very accurate. 
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FIGURE 9. Stereo plots of the magnitudes of the terms in the vorticity balance equation. The surfaces 
are drawn for values 70 yo and 90 % of maximum. (a), (6) and (c) show V, = Re I curl (u x o) I, 
V.  = Ra-’ 12 x grad TI and V, = lV*o I respectively. The higher-value surfaces are each contained 
by one of lower value. R = loo00 and Q = 1. 

We find that the layers near the vertical edges of the cube have the expected 
Gaussian form at high Phclet number Pe = u Re, which may be summarized as 

T(x, 0, f) - exp (-+Pe x2). 

However, the structure of T near the upper and lower edges of the face x = 0 is not 
so easily described, although a measure of layer thickness has the same scaling: the 
distance 6, along the line y = !j between the edge and the point where T is halved 
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FIGURE 10. The vertical variation of T, (solid line), T, (dashdot), T3 (dotted) and T4 (dashed) for 
(a )  rn = 1, R = 3500, (6 )  u = 1, R = 40000 and (c) u = 5, R = 5000. TI represents the production, 
T, the diffusion, T3 the molecular transfer and T4 the dissipation of horizontally averaged kinetic 
energy (after Lipps 1976). 

satisfies 6, - 0.9 x Pe-4. It follows that the plumes are more than twice as broad as 
their horizontal counterparts: MW find a factor of 1.7. 

It is surprising that along the bottom diagonal of the cube, T decays exponentially 
with z away from z = 0, so that 

T(G 2, 2) x exp [ - z / S , ( z ,  R)1, 

where 6, depends only weakly upon R, and S,(O) x 2, &,(a) x 0.6. The exponential de- 
pendence suggests that, since u&, y, 0) = 0, the diffusive term is locally unimpor- 
tant so u-grad T x 0 and the flow is along isotherms. Figures 5 and 6 confirm this. 

Of considerable importance is the variation of the Nusselt number N, a dimensionless 
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measure of the heat transport, as a function of R. Values of N, P e  and Re for all the 
runs made are listed in the Appendix, and N(R) is plotted for u = 1 in figure 13 (a), 
together with similar results for rolls of unit wavelength.We see that for low R, besides 
the three-dimensional motions having a greater critical R, their W/dR is also smaller, 
as predicted analytically (Malkus & Veronis 1958). In  the nonlinear regime, dN/dR 
for rolls declines more-rapidly, however, so that the heat transports are equal to within 
the accuracy of the calculation for R 2 1OOOO. 

A t  large R, N(R) does not seem to be a simple power law : d In N/d In R declines 
with R up to R = 6OOOO. This may be because the mesh size is not sufficiently great, 
so that N is systematically reduced at large R, as in MW; or because N has an 
additional logarithmic dependence. Since measures of the flow structure, e.g. u,,/u,, 
and uyrn/uzm are practically constant ( m  1.27 and 1.0 respectively for R 2 lOOOO), 
the latter seems more likely. If, however, this effect is neglected, N cc RO*3 is a crude 
fit to the numerical results - and Re = P e  cc RO*g to the same accuracy. 

The only analytical study of three-dimensional convection at large R for u = 0(1 )  
appears to be that of Riahi (1981). Comparison is difficult, because Riahi studies 
motions with a single wavelength, and the coupling constant C that appears in his 
formulae is zero for square cells. He does however predict that N cc & (In R)h for 
moderate values of u, which is not inconsistent with our results. 

5. Prandtl-number variation 
When u, the ratio of thermal to viscous diffusion, is not equal to unity, a number 

of purely computational constraints have to be considered. Even for the calculations 
described in this section where steady solutions are generally reached in a few 
turnover times, the machine time required to reach equilibrium scales roughly as 
max (a, u-l) because the numerical scheme is explicit. It is consequently uneconomic 
to study very large or small Prandtl numbers, although we can and have reduced 
costs in some cases by extrapolating to steady-state N, Re- and Pe-values from slowly 
converging data. In addition, we should especially like to obtain solutions for Re, 
P e  B 1 and u 4 1, because this is the astrophysically relevant regime (see e.g. Gough 
1977). Although Pe 2 O(30) is adequate for many purposes (cf. Weiss 1966), 
Re = c l P e  2 300 if e.g. u = 0.1. From the results for u = 1 we should expect a 
mesh with only 24 points in each direction to become unable to represent T- or u-fields 
when respectively P e  or Re reaches just such values. Our results for u < 1 must there- 
fore be regarded aa tentative. We have not attempted to study the corresponding 
regime with u B 1. 

5.1. u >  1 
Three runs were made at R = 5OOO for c = 2, 5 and 10, each starting with the 
perturbation velocity pattern described in 94.1. The steady T-fields obtained were 
all very similar, and resembled that found when u = 1, reflecting that the value of 
P e  is practically independent of u at constant R. This also indicates there can be no 
great variation in the form of u. Nevertheless, in agreement with the predictions of 
the truncated model, the spirally attracting stagnation points of the velocity field 
move closer to the midplane z = 4 as u increases. They also weaken, and for u 5 
the vorticity maxima lie on the vertical faces of the unit cube. 

We should expect the structure of u to become simpler because of the decrease in 
Reynolds number Re = u-'Pe. Indeed, the Poincar6-type plots of u reveal that the 
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ergodic regions have shrunk and are to be found only near the quarter-cell boundaries. 
Further, T,, which measures second gradients of u2, becomes negligible, and for a > 2 
no longer changes sign near z = 0 and 1 (figure 1Oc). 

when 
a = 5.  Coupled with this is a reduction in the relative importance of the transport 
term V, in the vorticity equation. The analogue of figure 9 shows that the dominant 
balance is between generation V2 and dissipation V,, and this takes place in the regions 
of spirally attracting flow. We conclude that we have entered the viscous regime ( M W ,  
JMW) associated with Re < O(1). Note that N is almost independent of a, just as 
in those two papers and also experimentally. Despite the comparatively minor role 
played by the thermal plumes here, it seems that the chief physical processes operate 
much as described by M W .  Taking into account the restrictions upon our geometry 
and the cautionary remarks made at the start of this section, i t  does not seem 
desirable to explore this region of parameter space any further. 

5.2. a < 1 and R = 5000 

The vertical vorticity measured by rw = w,,/u,, is also small: rw x 

In contrast with the small gradients of u seen at high Prandtl number, the small-a 
results are notable for their finely structured velocity fields. Nonetheless the 
temperature field shows little variation as a declines: T(x,  x, z )  still shows exponential 
decay near z = 0. The lengthscale d2(x, a) of the decay is only a weak function of a ;  
indeed d2(0, a) scarcely changes in the range of a studied. It does, however, become 
harder to identify Gaussian profiles in the other thermal boundary layers, as a result 
of their broadening : when a = 0.05 the effective PBclet number falls to O( 10). Only 
towards one end (e.g. (0, 0 , f ) )  of the thermal plumes is a (horizontal) Gaussian 
dependence clear for a < 0.1, and the plume thickness grows like Pe3 as in $4.2. 

Plotting u2 reveals changes, particularly in the minimum kinetic energy K-contour. 
When a = 0(1), besides small regions near the corners of the unit cube, this encloses 
the lines x = y = t ,  x = z = 1 2 and y = z = 4. Motion grows in the vicinity of the centre 
x = y = z = 2 as a gets smaller, and the surface contorts and changes its topology, 
although it remains connected. In planes z x f flow is small near the lines joining the 
vertical faces x = 0 with y = 1 and y = 0 with x = 1, but, in z t ,  K is least along 
lines perpendicular to these. The intersection of the minimum K-contour with each 
vertical face has a curious inclined dumbell-like form. 

Similar features are seen at high R for a = 1, but the small-a results take us up 
to greater effective Re. The size of Re determines how pronounced is the spatial 
variation of the smallest K-contour, and a = 0.2, R = 5000 has the same Re as 
R = 30000, a = 1, for example. These two solutions resemble each other very closely 
in other ways: their steady u are almost ergodic, the averages T,, i = 1, ..., 4 (34.1) 
have the same relative values, and their vorticity distributions are similar. This 
correspondence is explained by study of the vorticity-balance equation, which shows 
that V,, the only thermal term, is smaller than V, and V,. The final state is still reached 
on the turnover timescale at  small a, although N(t)  now monotonically approaches 
its steady value, unlike when a > 1. 

The dependence of steady N and Re upon a as a+O has been the subject of much 
study. The model of 32.2 predicts that for a 4 1 and r = 0(1), a cc a, i.e. Re = O(1). 
N = 1 -4e,  where ( - e )  = O( 1) ; hence, when a < 1, N -  1 cc a2 (a result essentially 
due to Malkus & Veronis 1958). Our numerical results for a 2 0.05 are approximately 
fitted by Re N a-4, suggesting that the simple model is invalid. This is scarcely 
surprising since the convoluted structure of the computed u and o is so different from 
that predicted by it. Indeed, if we attempt by reducing a still further to understand 
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FIQURE 11. (a) Plot of log,, N aa a function of log,,a for R = 2000 (marked aa squares), 3500 
(triangles) and 5OOO (circles). ( b )  is as (a) but drawn for log,, ( N -  1) versus log,, cr. 

why Re at u = 0.035 is discrepant, we find our numerical scheme breaks down (very 
sharp gradients of o2 are associated with Re 2 300). This is frustrating, because N 
also seems to change its functional dependence on cr near this point. 

Physically, Re x a-4 corresponds to convection at the reduced free-fall velocity. 
This we can show by returning briefly to dimensional notation. We have 
u,, d/v x (K/v)!, i.e. ui d2 - KV, and R = constant is equivalent to ga AT d3 - K V ;  hence 
ui - ga AT d .  This also implies that the dominant balance is of advection with buoy- 
ancy forces, which, however, contradicts the evidence from plots of V,, i = 1 ,  2 ,  3 
(see above). 
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FWJRE 12. Different regimes of convection (after JMW). The (R,  u)-plane is divided schematically 
into regions bounded by lines on which the P6clet number, the Reynolds number or the Prandtl 
number is of order unity, 

5.3. Further studies of u < 1 

In an attempt to clarify the above N- and Re-scalings, three further series of runs 
were made, two at fixed R = 2000 and 3500, and one where R was varied with u = 0.1. 
The latter set is interesting because the output indicates N x 1 for R = 2000, 
suggesting that as in MW and JMW there is a second critical Rayleigh number R* 
below which convective heat transport is negligible and the simple expansion and 
model of 52.2 are valid. We are primarily interested in the asymptotic scaling of R 
with Re, since R e x  & to be consistent with the reduced free-fall convection 
hypothesis. Just as at  u = 1, d In N/d In R is still changing significantly for R < 10000 
(to which accuracy considerations restrict us when u = O . i ) ,  and it is therefore no 
surprise that unfortunately Re(R) is also far from a power-law dependence. The 
detailed properties of u and T vary with R much as for u = 1. 

The additional runs with u < 1 help a little to resolve the issues raised in 55.2. 
Figure 11 (a) is the customary graph of the heat flux N on log-log paper. None of the 
plots made for different values of R is by itself particularly convincing, but taken 
together they suggest dln Nld lnu  x 0.2-0.3, provided N is not too close to unity. 
Figure 11 (b) shows smaller N satisfy N- 1 oc ue where e x 1-1.2. Sadly for the 
durability of these scalings, figure 13 (b) shows that N oc In u is just as good a fit to 
the computed heat fluxes at R = 5000. Nevertheless, the power laws change where 
Pe  x 7, which is a low, but not implausible, value at which to expect properties of 
the convection to alter. Similarly, irrespective of R and u < 1, at  P e  x 10 the 
vorticity-generation term V, becomes maximal in the spiral attracting regions of flow 
rather than in the centres of the cube faces. 

Otherwise there is surprisingly little change in the convection at this Pe, apparently 
because the advective and dissipative terms still dominate the vorticity equation even 
when R = 2000. There are few surprises in the forms of the fields themselves. A 
gradual variation in & and Ti becomes pronounced when Re z 150: T, falls to 
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approximately 0.4T,, the profiles T, (z )  become less rounded to resemble those of 
figure lO(c), and the maxima of V, and V, lie exterior to (respectively to one side of 
and below) the spiral attractors (although this is not an invariable rule). However, 
there is no corresponding change in the heat-flux scalings, so the significance of this 
is unclear. 

Our results for a < 1 are best summarized with reference to the regime diagram 
of figure 12. (Regions I, I1 and 111 with a > 1 are included by analogy with JMW.) 
In IV, where advection dominates, we have tentatively shown N oc c+2-o.a and that 
convection takes place at the reduced free-fall velocity so Re a CT-O.~ .  Region V is 
enlarged compared to J M W ;  because of the absence of ‘flywheel’ solutions we have 
to go to higher R to achieve the same Pe - 1 that divides IV and V. Here N -  1 oc a1-1.2, 
and Re depends more weakly on a. Lastly, VI  corresponds to Re and Pe Q 1, where 
we expect the results of 8 2.2 to apply so that N -  1 a a2 and Re is independent 
of a. There appears to be a discontinuity in the heat-flux gradient aa a function of R 
as the boundary between VI  and V is crossed, although we have not been able to 
study this as closely aa JMW. 

6. Variation of initial conditions and stability 
This section goes further than $3.2 into the effect of changing the initial conditions. 

First we introduce the notation CH/I (for Chandrasekhar 1961) to describe the 
(1, 1, 1)-mode velocity perturbation used in $94 and 5 ,  and R2/I for the developed 
1 = 1 convection which results. (Note that because of the symmetries involved it 
would be better to take 231 as a measure of wavelength.) To study convection with 
1 = 2t we employ as initial perturbation the pattern CH/R, derived from CH/I by 
the transformation x + y + x, x - y + y, giving an F ( x )  = (cos xx + cos xy) sin xz.  

Three runs were made with this F and a = 1, at R = 5, 10 and 20 x loa. Near the 
end of each, a three-dimensional solution became unstable. We can estimate from 
measures of the flow, e.g. u,,, the maximum value of Iu,l, that solutions R2/R are 
approached and the flow approximates them for 20-30 to, where to = l/uzm is the 
turnover time. As we would expect, since the fluid is incompressible, the maximum 
values of IuI now lie on the planes z = 0 and 1, rather than on vertical edges of the 
cube. When the instability develops u,,/u,, falls by 90% in a few to, apparently 
leading to an x-independent solution. Runs at R = 5000, a = 0.05 and 10 were not 
integrated for so many to. Although the computed N are higher than those of R2/I, 
the value is not settling down in the same way, suggesting that instability will also 
occur. Convection with 1 = 2 3  may be studied similarly: one run was made at 
R = 20000, a = 1, and an unstable solution was found with N less than the 
corresponding values for R2/R and R2/I. The timescale for the instability to appear 
is apparently related to that of the full development of (unstable) structures where 
viscosity is locally negligible: for R2/I this growth of other modes is prevented by 
the boundary conditions (92.3). 

Figure 13(a) gives the impression that, as a function of R, the heat transport by 
each square planform with 1 ;5 1 slackens off after an initial steep rise to an N close 
to the maximum for rolls, with d In N/d In R decreasing as R+ 00. This implies that 
for a = 1 the maximum N(R) for rolls is an envelope function of N(R, 1) for all 
square-planform wavelengths 1. This helps to explain why the numerically determined 
heat transport by rolls agrees with experimental results for a x 1 where the flow is 
three-dimensional and turbulent (Busse 1978). 

The next velocity pattern to study was suggested by numerical integration of (2.3) 
14 FLM 152 
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FIGURE 13. Nusselt number N plotted (a) as a function of Rayleigh number R,  for u = 1 ,  and (b)  
aa a function of Prandtl number u for R = 5OOO. In (a) the upper line is Nfor rolls; the points marked 
x are for the unstable solutions with wavelength 1 = 21 and A is for a solution 1 = 24.  
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aa u and r < r ( f )  were varied, using many different initial conditions. If b = f & a, d 
and e initially, there was a violent transient, followed by b andffalling to zero. Only 
on a timescale long compared with those naturally occurring in (2.3) did the motion 
recover. We were able to duplicate this behaviour to a very limited extent for 
R = 5000 and u = 1 ; by taking b = 10a flow was reduced for an interval of B to. 
When an initial (2,0,2) temperature perturbation waa included, the heat-transport 
reduction lasted for a slightly shorter time. Here to is based on the initial urn, which 
is about half the ultimate equilibrium value. In (2.3) this ‘mode suppression’ arises 
apparently because the higher-order mode is linearly stable if r < df), and acts as 
a sink for ‘energy’ in the (1, 1 , l ) .  The remaining results from solving (2.3) were 
entirely predictable, and we conclude that it is unnecessary to carry out other 
fully three-dimensional calculations starting with initial conditions of (1 , 1 , 1) and 
(2,0,2) form. 

We now take as initial velocity pattern DY/I, derived from the flow DY of paper 
A, so that 

P(x)  = (cos xx cos xy ++[cos 2xz + COB 2xyl) sin xz. 

It is topologically different (as discussed in $1) from CH/I and related patterns. 
However, motion with the topologically similar hexagonal planform is unstable near 
onset, unless the density p has a quadratic dependence on T (Busse 1967). As 
expected, a run started with DY/I at  R = 10OO0, u = 1 led to R2/I. Two runs were 
then made with an initial large-amplitude DY/I perturbation, setting 

P = Po(1 -B*[T- Tol2), 

but the resulting flows were nevertheless topologically equivalent to R2/I. (The 
appropriately redefined R were 40 and 18 x lo3, u = 1 and 5.) It seems the shape and 
small extent of the computational box is the dominant factor. Moreover, it is not easy 
to discover which problems, subject also to the constraint described in $3.2, lead to 
a changed topology of u. Consequently no more work was carried out in this direction. 

With p once more linearly dependent on T, runs were started without any flow 
by using temperature perturbations. Two were tried: 

1 5  
8, = (1 -z)+-  E cosnxx cosmxy sinnz 

e, = ( ~ - z ) + & (  E cosnxzcosmxysinnz+ E cosmxysinxz . 

The factor & is after Grotzbach (1982). 8, was used at  R = 5oO0, cr = 0.05 and u = 10, 
and each solution waa apparently tending to R2/I when the runs were terminated. 
Inclusion of the 2-independent terms 8, leads to rolls with predictable alignment, 
although these are slow to develop fully. For the run with u = 10, N undergoes a 
damped oscillation with period 3t0 as the variation in z fades : but, after three periods, 
u,,/uZrn remains approximately 0.06 and w,,/u, = lo-,. There are also irregular, 
short-timescale O(30), small-amplitude excursions in uym and u,,. These are not 
found for u = 0.05: instead u,, moves erratically and not always monotonically to 
about 0.6 yo of u,, in a time 0(50to). to is not precisely determined, because u,,, uyy 
and N are still monotonically increasing at  the end of the run: we infer that ‘flywheel 
convection is developing and that ultimately u,, + O .  

Finally, a computation started using 8, at R = 30000, cr = 1 unexpectedly led to 

2Om.n-1 
and man 

1 4 4 

m, n-1 m-1  
man 

14-2 
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roll-like motion with uym small and erratically decreasing: uym/uz, x 3% at time 
Wt,. This run is also remarkable for an irregular, small-amplitude (AN % 0.03), 
small-timescale 0(5t,) variation in N ,  which moreover is uncorrelated with similar 
changes in u,, and uzm. 

In all of the runs employing O,, the variation in the direction of the ‘roll ’ axis has 
a wavelength equal to unity. This feature’s persistence suggests it is a form of bimodal 
convection (Frick et al. 1983). Frick et al., working at infinite Prandtl number with 
fixed-plate boundaries, show that square-pattern convection (R2 in our notation) is 
unstable to long-wavelength perturbations, which, however, have very slow growth 
rates. Bimodal convection would be expected to develop both at large 6, and for 
u = 0(1) ,  R = O(20000) (Busse 1978). Rolls are unstable at small c (Busse 1972; 
Zippelius & Siggia 1982). However, all our computations show that R2/R is unstable 
and rolls are the outcome. 

This result is explained by the small aspect ratio of the computational box, since 
wavelengths greater than i t  (except for the infinite one) cannot be represented by 
it (Grotzbach 1983). Thus the analytically favoured bimodal solutions, which 
typically have one horizontal wavelength much greater than the other, are excluded. 
We conclude that the absence of x- or y-independent perturbations is a necessary 
condition for R2/I or R2/R to develop, and that both, considered as part of a wider 
convective layer, are unstable to longer-wavelength disturbances. 

7. Conclusion 
We have studied in great detail a particular form of three-dimensional convection, 

principally by numerical calculation. Of our new results, perhaps the most interesting 
is the (N, a)-scaling at constant R for u < 1, viz N cc a0.2-0.3 when the P6clet number 
Pe 2 O( l) ,  and N -  1 ot u for small Pe. JMW inferred on the basis of axisymmetric 
calculations that N should be independent of d in three-dimensional convection: the 
difference arises because vorticity transport is significant in a square cell. However, 
like JMW we find that the Re = 1 and Pe = 1 lines divide parameter space into regions 
with different physical properties. It is remarkable too how Re and Pe determine the 
forms of o and T almost independently of one another. Moreover, the steep gradients 
of o which occur for Re large are greater than in two-dimensional computations. 

We have not found any statistically steady, irregularly time-dependent solutions. 
Those that we produced by some of our choices of initial conditions in $6 were all 
apparently transient. We might infer that longer-wavelength motions are important 
for convective turbulence to develop from a pattern of square cells. 

We have confirmed that the Boussinesq equations have solutions u with ergodic 
streamlines, as predicted by the truncated model (Arter 1983b). Owing to the relation 
between the streamline equations and second-order Hamiltonian systems, we should 
expect such behaviour to be generic, and it is therefore somewhat surprising that no 
experimental evidence for the phenomenon is available : Ozoe, Sato & Churchill (1979) 
demonstrate the converse. The value of a scan of (R,  @-space such as ours is that 
it demonstrates that the key parameter is Re, and Re 2 Re, 2 O(10) for ergodicity 
(and also the vertical component of vorticity wz)  to be significant. Doubtless geometry 
is a factor in determining Re,, and the boundary conditions used by Ozoe et al. are 
different from ours, but since they, like most experimenters, are working with high-cr 
fluids, it seems they are not at sufficiently large Re. 

It is remarkable that ergodicity leads to no other new effects. We should expect 
a region occupied by ergodic flow to be isothermal at  high Pe, except in boundary 
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layers, where necessarily u'grad T + 0, but we could have anticipated this type of 
solution from two-dimensional calculations. Note that even the initial dispersal of 
a blob of dye in a turbulent fluid, where we might expect ergodicity to be an important 
effect, may be described without explicit introduction of the concept (Garrett 1983). 

In relation to fluid turbulence, it seems that ergodicity must be regarded as an 
epiphenomenon. There does, however, remain the possibility that it may lead directly 
to turbulence (B. McNamara, private communication). An ergodic flow undergoes a 
much greater degree of local shear than one where streamlines are closed (Arnold 
1972): it is possible that this prevents, in a way that is hard to make precise, the 
atoms and molecules coming into full thermal equilibrium, i.e. the continuum 
hypothesis breaks down. In  support of this is the correlation between ergodicity and 
Reynolds number: Re is a critical parameter in determining the onset of convective 
turbulence (Busse 1978). However, in agreement with the widely accepted view, 
McLaughlin & Orszag (1982) show that the Boussinesq equations are adequate to 
describe onset. Nonetheless, the experimental demonstration of an ergodic, laminar 
flow gains in importance. 

Ergodicity should not overshadow another curious discovery, namely that, in 
laminar convection, vertical lines may be drawn through the flow where the isotherms 
do not have a boundary-layer structure near either the top or the bottom. Presumably 
the resulting local inefficiency in the heat transport is compensated for by changes 
in the velocity field due to the increased buoyancy force associated with these regions. 

Like most of the preceding results, it is not clear how this last one applies to 
astrophysical convection, aa we have failed to produce flows with the observed 
topological form. Introducing other asymmetries into the system of equations may 
help, but our results are not very encouraging (§6) ,  and understanding these new 
effects may not in any case be straightforward. We shall have to study other 
planforms to be certain in particular that the heat transport is a strong function of 
CT < 1 ; this does, however, seem likely, since the results of MW and JMW that N is 
independent of CT < 1 are in conflict with mixing-length theories of stellar convection 
(Gough 1977). 

I wish to thank Dr N. 0. Weiss especially for encouraging me to proceed with the 
numerical calculations : Dr B. McNamara provided valuable advice on Hamiltonian 
dynamics. I am very grateful for the programming assistance given by Dr S. Davies 
of DAPSU, Queen Mary College, London, and for the help provided by DAPSU, QMC 
Computer Centre, and Drs R. Stratford and R. D. Harding of Cambridge University. 
The SERC provided both a studentship and time on the DAP. The output of the DAP 

runs was analysed on the IBM 370/165 and IBM 3081 of the Cambridge University 
Computing Service. 

Appendix 
Below are the parameters for nearly all the runs made: 1 = 1 unless otherwise 

stated. In brackets are the corresponding Nusselt number N (in boldface) and 
Reynolds number Re (Pkclet number Pe = CT Re). Single numbers in brackets are N 
for rolls: if starred they were derived using the IBM 3081 of the Cambridge University 
Computing Service on a mesh of 24 x 24 (single star) or 48 x 48 (double star) points, 
with a code described by Moore et al. (1973). 
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a = 0.1 
R = 2000 (1.16, 54), R = 2500 (1.34, 79), R = 3000 (1.53, 103), R = 3500 (1.73, 

126), R = 5000 (2.22, 184), R = 7500 (2.79, 259), R = loo00 (3.21, 320). 

a = l  

R = 1500 (1.19,7.1), 2000 (1.66, 14.2), 2500 (2.82*), 3500 (2.68,26.8), 4000 (3.45), 
5000 (3.39, 35.9), (3.77), 7500 (4.41), loo00 (4.85, 58.5) (4.91*), 15000 (5.70, 76.4) 
(5.72*), 20000 (6.31, 92.1) (6.35*), 25000 (6.80, 106) (6.88*), (7.02**), 30000 (7.20, 
119), 35000 (7.55, 131), 40000 (7.86, 143), 60000 (8.86, 183). 

R = 2000 
u = 0.05 (1.07, 65), = 0.1 (1.16, 54), c = 0.2 (1.33, 41), u = 0.4 (1.51, 28). 

R = 3500 
~=0.02(1.12,245),~=0.035(1.26,203),~=0.05(1.39,179),a=0.1(1.73,126), 

a = 0.2 (2.09, 82), a = 0.4 (2.43, 52). 

R=5000 
u = 0.035 (1.50, 317), 0.05 (1.71, 269), 0.07 (1.95, 226), 0.1 (2.22, 184), 0.2 (2.70, 

116), 0.4 (3.10, 70.2), 1 (3.39, 35.9), 2 (3.42, 20.6), 5 (3.38, 8.96), 10 (3.37, 4.56). 

1 = 2f, a = 1 (unstable) 
R = 5000 (3.79, 38.7), 10000 (4.88, 63.6), 20000 (6.12, 103). 

1 = 6, R = 5000 (unstable?) 
a = 0.05 (2.7, 420), = 10 (4.0, 5.8). 

2 = 23, a = 1 (unstable) 

R = 20000 (5.91, 80.2). 

1 = 1, density quadratically dependence on temperature 
u = 1, R = 40000 (4.73, 64.8). c = 5, R = 18000 (3.1, 10). 
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